

Internet of Things Machine Learning

Learning based dynamic optimization in massive IoT networks

Nan Jiang¹, Yansha Deng², Osvaldo Simeone², and Arumugam Nallanathan¹

¹School of Electronic Engineering and Computer Science, Queen Mary University of London ²Department of Informatics, King's College London

Objectives

• Optimizing **massive** and **inter-dependent** configurations under **time-varied traffic** and **heterogeneous requirements** in mIoT networks.

Deep Reinforcement Learning:

- Self-Improvement
- Cooperative Optimization
- Long-term KPIs

Conventional Solutions:

- Heuristic
- Independent Optimization
- Short-term KPIs

Case Study:

- NarrowBand-IoT (5G mIoT solution)
- Bursty Traffic Scenario (e.g., massive alarm system)
- Configuring resource for access and data

Methodology:

- Q-learning
- DNN/LSTM
- Multi-agent Cooperative Learning

Numerical Results:

Reference: Jiang, Nan, et al. "Cooperative Deep Reinforcement Learning for Multiple Groups NB-IoT Networks Optimization." *arXiv preprint:1810.11729* (2018).

