Contents on the Move Content Caching and Delivery at the Wireless Network Edge

Deniz Gündüz Imperial College London

25 April 2018 Queen Mary University of London London, UK

Information Processing and Communications Lab (IPC-LAB)

www.imperial.ac.uk/ipc-lab

twitter.com/Imperial_IPCL

- Video demand dominates traffic (78% by 2021)
- 75% of Facebook video browsing, 40% of Netflix downloads performed on smartphones
- We need a content aware network design
- Asymmetric resource usage
- Delay-tolerant, asynchronous access
- Most traffic due to a few viral/ popular video files
- Demand and access patterns highly predictable

- Video demand dominates traffic (78% by 2021)
- 75% of Facebook video browsing, 40% of Netflix downloads performed on smartphones
- We need a content aware network design
- Asymmetric resource usage
- Delay-tolerant, asynchronous access
- Most traffic due to a few viral/ popular video files
- Demand and access patterns highly predictable

- Video demand dominates traffic (78% by 2021)
- 75% of Facebook video browsing, 40% of Netflix downloads performed on smartphones
- We need a content aware network design
- Asymmetric resource usage
- Delay-tolerant, asynchronous access
- Most traffic due to a few viral/ popular video files
- Demand and access patterns highly predictable

- Video demand dominates traffic (78% by 2021)
- 75% of Facebook video browsing, 40% of Netflix downloads performed on smartphones
- We need a content aware network design
- Asymmetric resource usage
- Delay-tolerant, asynchronous access
- Most traffic due to a few viral/ popular video files
- Demand and access patterns highly predictable

Content Distribution Networks

- Content provider (e.g. Netflix, BBC, Facebook) contracts with a CDN (e.g. Akamai, LimeLight)
- Balance traffic, reduce latency, ...
- This is in the core network

Content Distribution Networks - Wireless

- Content provider (e.g. Netflix, BBC, Facebook) contracts with a CDN (e.g. Akamai, LimeLight)
- Balance traffic, reduce latency, ...
- This is in the core network
- Bring content to the edge (e.g., Netflix Open Connect)

Coded Proactive Content Caching

- Two-phase protocol:
 - Placement phase: off-peak hours, user demands unknown
 - Delivery phase: peak hours, demands revealed
- Library of N files, each consisting of F bits
- K users, each equipped with a cache of size M
- Each user requests one file
- Error-free shared delivery link: Satisfy all demands simultaneously
- What is the minimum number of bits that must be delivered sufficient to satisfy all demand combinations?
- What is the trade-off between cache capacity and number of delivered bits?

M. A. Maddah-Ali and U. Niesen, **Fundamental limits of caching**, IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Coded Proactive Content Caching

- Two-phase protocol:
 - Placement phase: off-peak hours, user demands unknown
 - Delivery phase: peak hours, demands revealed
- Library of *N* files, each consisting of *F* bits
- K users, each equipped with a cache of size M
- Each user requests one file
- Error-free shared delivery link: Satisfy all demands simultaneously
- What is the minimum number of bits that must be delivered sufficient to satisfy all demand combinations?
- What is the trade-off between cache capacity and number of delivered bits?

M. A. Maddah-Ali and U. Niesen, Fundamental limits of caching, IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

Coded Proactive Content Caching

- Two-phase protocol:
 - Placement phase: off-peak hours, user demands unknown
 - Delivery phase: peak hours, demands revealed
- Library of *N* files, each consisting of *F* bits
- K users, each equipped with a cache of size M
- Each user requests one file
- Error-free shared delivery link: Satisfy all demands simultaneously
- What is the minimum number of bits that must be delivered sufficient to satisfy all demand combinations?
- What is the trade-off between cache capacity and number of delivered bits?

M. A. Maddah-Ali and U. Niesen, Fundamental limits of caching, IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

- N = 3 files
- K = 3 users
- Cache capacity: M = 1
- Split each file into 3 non-overlapping equal-size subfiles:

• Cache contents after placement phase:

• Delivery phase:

• Delivery rate: $R_{\text{MAN}}(1) = 1$

- N = 3 files
- K = 3 users
- Cache capacity: M = 2
- Split each file into 3 non-overlapping equal-size subfiles:

W_1	12	13	23
W_2	12	13	23
W_3	12	13	23

• Cache contents after placement phase:

• Delivery phase:

• $R_{\text{MAN}}(2) = 1/3$

Delivery Rate-Cache Capacity Trade-off

Many improvements and variations since then...

M. Mohammadi Amiri and D. Gündüz, Fundamental limits of caching: Improved delivery rate-cache capacity trade-off, IEEE Trans. on Communications, vol. 65, no. 2, pp. 806-815, Feb. 2017.
 M. Mohammadi Amiri, Q. Yang and D. Gündüz, Decentralized coded caching with distinct cache

Caching and Delivery for Heterogeneous Devices

- Devices have different resolution/processing capabilities
- They may request the same file, but at different resolutions
- \bullet D_k : distortion requirement of user k. Without loss of generality, let

$$D_1 \geq D_2 \geq \cdots \geq D_K$$

• Devices have distinct cache capacities: M_k

Q. Yang and D. Gündüz, Coded caching and content delivery with heterogeneous distortion requirements, to appear, IEEE Trans. on Information Theory.

Scalable Coded Caching

D ₁ D ₂ D ₃ :	r_1	$r_{2}-r_{1}$	$r_{3} - r_{2}$
	D_1		
: D ₃		D ₂	
i i		D_3	
	:		

Compress video into multiple quality layers; e.g., scalable video coding (SVC) in H264/ MPEG

- First layer: r_1 bits/sample
- k—th layer: $r_k r_{k-1}$ bits/sample
- User k wants $D_k \to \text{needs first } k$ layers

Centralized Lossy Coded Caching (N = K = 2)

Given (r_1, r_2) , five cases depending on cache capacities M_1 and M_2 :

- Case i&ii: coded placement
- Case iii&iv: coded placement and coded delivery
- Case v: uncoded caching

- Proposed layered caching scheme is optimal.
- Requires coded caching and delivery simultaneously.

Scalable Coded Caching and Delivery

Two subproblems:

- Cache allocation among different layers
- Lossless caching/delivery of each layer with heterogeneous cache sizes

Cache capacity allocation:

- Proportional Cache Allocation (PCA)
 - Allocate cache capacity proportionally (to sizes) among requested layers
- Ordered Cache Allocation (OCA)
 - Allocate cache capacity to "more important" first layers

Scalable Coded Caching and Delivery

Two subproblems:

- Cache allocation among different layers
- Lossless caching/delivery of each layer with heterogeneous cache sizes

Cache capacity allocation:

- Proportional Cache Allocation (PCA)
 - Allocate cache capacity proportionally (to sizes) among requested layers
- Ordered Cache Allocation (OCA)
 - Allocate cache capacity to "more important" first layers

Identical Cache Capacities

- $D_1 \ge D_2 \ge \cdots \ge D_{10}$: $r_k = k, k = 1, ..., 10$;
- Identical cache capacities, $M_k = M$.

Heterogeneous Cache Capacities

- $D_1 \ge D_2 \ge \cdots \ge D_{10}$: $r_k = k, k = 1, ..., 10$;
- Heterogeneous cache capacities, $M_k = 0.2kM$.

Cache-Aided Wireless Content Delivery

$$\delta_k = egin{cases} \delta_w & ext{if } k \in [K_w] \ \delta_s & ext{if } k \in [K_w+1:K] \end{cases}$$

S. Saeedi Bidokhti, M. Wigger, and R. Timo, Noisy Broadcast Networks with Receiver Caching, submitted.

Packet Erasure Broadcast Channel

- Library of N files: W_1, \ldots, W_N
- Each file is distributed uniformly over $\left[2^{nR}\right] \stackrel{\Delta}{=} \left\{1, \dots, 2^{nR}\right\}$
- Packet erasure broadcast channel

$$P(Y_k = y_k | X = x) = \begin{cases} 1 - \delta_k, & \text{if } y_k = x, \\ \delta_k, & \text{if } y_k = \Delta \end{cases}$$

- $\bullet \ P_e \stackrel{\triangle}{=} \max_{(d_1, \dots, d_K) \in [N]^K} \Pr \left\{ \bigcup_{k=1}^K \left\{ \hat{W}_{d_k} \neq W_{d_k} \right\} \right\}$
- (M, R) is achievable, if for every $\varepsilon > 0$, $\exists n$ large enough, s.t. $P_e < \varepsilon$

$$C \stackrel{\Delta}{=} \sup \{R : (M, R) \text{ is achievable}\}$$

• Cache capacity of *M* only at weak receivers

Main Result: Achievable Rate-Memory Pairs

Memory-rate pairs $(M_{(p,q)}, R_{(p,q)})$ are achievable for any $p \in [0:K_w]$ and $q \in [p:K_w]$:

$$\begin{split} R_{(p,q)} & \stackrel{\Delta}{=} \frac{F \sum\limits_{i=p}^{q} \left(\gamma \left(p,i \right) \right)}{\frac{1}{1-\delta_{w}} \sum\limits_{i=p}^{q} \left(\frac{K_{w}-i}{i+1} \gamma \left(p,i \right) \right) + \frac{K_{s}}{1-\delta_{s}}}, \\ M_{(p,q)} & \stackrel{\Delta}{=} \frac{N \sum\limits_{i=p}^{q} i \gamma \left(p,i \right)}{K_{w} \sum\limits_{i=p}^{q} \gamma \left(p,i \right)} R_{(p,q)}, \end{split}$$

where

$$\gamma(p,i) \stackrel{\Delta}{=} \frac{\binom{K_w}{i}}{\binom{K_w}{p}K_s^{i-p}} \left(\frac{1-\delta_s}{1-\delta_w} - 1\right)^{i-p}, \text{ for } i = p,...,q.$$

M. Mohammadi Amiri and D. Gündüz, Cache-aided data delivery over erasure broadcast channels, *IEEE Transactions on Communications*, vol. 66, no. 1, pp. 370 - 381, Jan. 2018.

Successive Joint Cache-Channel Coding (SCC) Scheme

- $K_w = 3$ weak RXs
- $K_s = 2$ strong RXs
- p = 0, q = 2

- Rate of $W_i^{(k)}$ is $R^{(k)}$, k = 0, 1, 2
- $R^{(0)} + R^{(1)} + R^{(2)} = R$

Successive Joint Cache-Channel Coding (SCC) Scheme

Placement phase:

• Cache capacity: $M = R^{(1)}/3 + 2R^{(2)}/3$

- q p + 2 = 4 distinct messages delivered by **time division** multiplexing
- Codewords of *i*-th message are of length $\beta_i n$ channel uses, i = 1, ..., 4:

$$\sum_{i=1}^{4} \beta_i = 1$$

Message 1:

$$\frac{R^{(2)}/3}{(1-\delta_w)F} \le \beta_1$$

Message 2, Part 1:

$$\max\left\{\frac{R^{(1)}/3}{(1-\delta_w)F}, \frac{R^{(1)}/3+2R^{(2)}/3}{(1-\delta_s)F}\right\} \le \beta_{2,1}$$

Message 2, Part 2:

$$\max\left\{\frac{R^{(1)}/3}{(1-\delta_w)F}, \frac{R^{(1)}/3 + 2R^{(2)}/3}{(1-\delta_s)F}\right\} \le \beta_{2,2}$$

Message 2, Part 3:

Correct decoding if

$$\max\left\{\frac{R^{(1)}/3}{(1-\delta_w)F}, \frac{R^{(1)}/3 + 2R^{(2)}/3}{(1-\delta_s)F}\right\} \le \beta_{2,3}$$

Equivalently:

$$\max\left\{\frac{R^{(1)}}{(1-\delta_w)F}, \frac{R^{(1)}+2R^{(2)}}{(1-\delta_s)F}\right\} \le \beta_2$$

Message 3, Part 1:

$$\max\left\{\frac{R^{(0)}}{(1-\delta_w)F}, \frac{R^{(0)}+2R^{(1)}/3}{(1-\delta_s)F}\right\} \le \beta_{3,1}$$

Message 3, Part 1:

$$\max\left\{\frac{R^{(0)}}{(1-\delta_w)F}, \frac{R^{(0)}+2R^{(1)}/3}{(1-\delta_s)F}\right\} \le \beta_{3,2}$$

Message 3, Part 3:

Correct decoding if

$$\max\left\{\frac{R^{(0)}}{(1-\delta_w)F}, \frac{R^{(0)}+2R^{(1)}/3}{(1-\delta_s)F}\right\} \le \beta_{3,3}$$

Equivalently:

$$\max\left\{\frac{3R^{(0)}}{(1-\delta_w)F}, \frac{3R^{(0)}+2R^{(1)}}{(1-\delta_s)F}\right\} \le \beta_3$$

SCC Scheme: Delivery phase

Message 4:

Correct decoding if

$$\frac{2R^{(0)}}{(1-\delta_s)F} \le \beta_4$$

Achievable Memory-Rate Pair Analysis

• Message 1: $\frac{R^{(2)}/3}{(1-\delta_w)F} \le \beta_1$

• Message 2: max $\left\{\frac{R^{(1)}}{(1-\delta_w)F}, \frac{R^{(1)}+2R^{(2)}}{(1-\delta_s)F}\right\} \le \beta_2$

• Message 3: max $\left\{ \frac{3R^{(0)}}{(1-\delta_w)F}, \frac{3R^{(0)}+2R^{(1)}}{(1-\delta_s)F} \right\} \le \beta_3$

• Message 4: $\frac{2R^{(0)}}{(1-\delta_s)F} \le \beta_4$

 β_i s chosen such that:

$$\frac{R^{(2)}/3}{(1-\delta_w)F} + \frac{R^{(1)}}{(1-\delta_w)F} + \frac{3R^{(0)}}{(1-\delta_w)F} + \frac{2R^{(0)}}{(1-\delta_s)F} = 1$$

Choose rates s.t. max achieved by equality.

$$R^{(0)} + R^{(1)} + R^{(2)} = R$$

Required cache capacity:

$$M = \frac{R^{(1)}}{3} + \frac{2R^{(2)}}{3}$$

Summary of SCC Scheme

Rate-Memory Trade-off

$$N = 3, K = 3$$

Rate-Memory Trade-off

Cache-Aided Delivery over the Wireless Edge

System overview

- $K_T \times K_R$ interference channel
- Transmitter cache: M_TF
- Receiver cache M_RF

Sum Degrees-of-Freedom

$$DoF(M_T, M_R) = \liminf_{P \to \infty} \frac{C(M_T, M_R, P)}{\log(P)}$$

 Decentralized caching at user terminals (RXs)

Novel scheme combining:

- Zero-forcing
 - Interference cancellation
 - Interference alignment

Fog-Aided Radio Access Networks

System overview

- Fronthaul connections to base stations
- Uncached contents can be delivered from the cloud server

Normalized Delivery Time

$$\delta(M_T, M_R) = \lim_{P \to \infty} \lim_{F \to \infty} \frac{T_F + T_E}{F/\log(P)}.$$

- Orthogonal backhaul links
- Fronthaul capacity r unknown during placement
- Serial/ pipelined fronthaul delivery

- Hard-transfer fronthauling
- Joint edge and cloud delivery

A. Sengupta, R. Tandon, and O. Simeone, Cloud and cache-aided wireless networks: Fundamental latency trade-offs, IEEE Trans. on Information Theory, Nov. 2017.

J. Pujol-Roig, F. Tosato, and D. Gündüz, **Storage-latency trade-off in cache-aided fog radio access networks**, to appear in IEEE Int'l Conf. on Communications, Kansas City, MI, May. 2018.

Proactive Caching for Resource Optimization

- Channel and network conditions vary over time
- State of the art: Reactive content delivery
- User behaviour (demands and mobility) are highly predictable
- Contents can be pushed in advance when channel is good.

A. C. Gungor and D. Gündüz, **Proactive wireless caching at mobile user devices for energy efficiency**, Int'l Symp. on Wireless Comm. Systems (ISWCS), 2015.

M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gündüz, Wireless content caching for small cell and D2D networks. IEEE Journal on Selected Areas in Communications. May 2016.

Proactive Caching for Energy Efficiency

- Demands known/ predicted in advance
- Finite capacity cache at user terminal
- System model:
 - Duration of time slot i: τ_i
 - User demand rate: d_i
 - Channel state: h_i
 - Cache capacity: B
 - Rate-power function: $r(t) = \log(1 + h(t)p(t))$

-- Demand Curve

• Objective: Minimize energy consumption over *N* timeslots:

$$\min_{r_i \geq 0} \sum_{i=1}^N \tau_i \frac{e^{r_i} - 1}{h_i}$$
s.t.
$$\sum_{i=1}^n \tau_i (d_i - r_i) \leq 0, \text{ for } n = 1, \dots, N,$$

$$\sum_{i=1}^{n} \tau_{i}(r_{i} - d_{i}) - B \leq 0, \text{ for } n = 1, \dots, N.$$

Sequential Backwards Waterfilling

- Download demands over a longer period, and in better channel conditions
- Each file can be downloaded only in advance, not later than when it is requested
- Proactive caching amount is limited by cache memory

Proactive Caching in a Dynamic Environment

- Contents generated randomly, with random lifetime
- User accesses at random time instants to download all relevant contents (e.g., online social network)
- Cost = Channel cost of download × downloaded data
- Goal: Minimize long-term average cost
- Proactively cache content at favourable channel conditions

S. Somuyiwa, A. Gyorgy and D. Gündüz, A Reinforcement-Learning Approach to Proactive Caching in Wireless Networks, revised. *IEEE Journal on Selected Areas in Communications*, 2018.

System Model

System State:

- Relevant contents outside cache $\Rightarrow \mathcal{O}_t$.
- Contents inside cache $\Rightarrow \mathcal{I}_t (|\mathcal{I}_t| \leq B)$.
- Elapsed time since last user access $\Rightarrow E_t$.
- Energy cost of downloading a content $\Rightarrow C_t$ (0 < $C_t \le C_{max}$): i.i.d. over time.

MDP Model

Markov decision process with side information (MDP-SI).

- ▶ State ($s \in S$):
 - Controllable state: $(\mathcal{O}_t, \mathcal{I}_t, E_t)$.
 - Uncontrollable state: $C_t \Rightarrow$ side information
- ▶ Action ($a \in A_s$): $A_t = (A_t^{(1)}, A_t^{(2)})$.
- ▶ Transition probability: $P(S_{t+1}|S_t, A_t)$.
- ▶ Cost function: $\mu(S_t, A_t) = C_t \cdot |A_t^{(1)}|$.
- ▶ Objective function: $\rho = \lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\mu(S_t, A_t)\right].$

MDP Model

Markov decision process with side information (MDP-SI).

- ▶ State ($s \in \mathcal{S}$):
 - Controllable state: $(\mathcal{O}_t, \mathcal{I}_t, E_t)$.
 - Uncontrollable state: $C_t \Rightarrow$ side information
- ► Action ($a \in A_s$): $A_t = (A_t^{(1)}, A_t^{(2)})$.
- ▶ Transition probability: $P(S_{t+1}|S_t, A_t)$.
- ► Cost function: $\mu(S_t, A_t) = C_t \cdot |A_t^{(1)}|$.
- ▶ Objective function: $\rho = \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mu(S_t, A_t) \right].$

Structure of Optimal Policy

For any state $s = (\mathcal{O}, \mathcal{I}, E) \in \mathcal{S}$, the optimal policy $\pi^*(s)$ has a threshold structure with respect to cost C.

- ▶ Let
 - $l_1 \leq \cdots \leq l_B$:contents in the cache (\mathcal{I}) .
 - $L_1 \ge \cdots \ge L_B$: B contents out of cache (\mathcal{O}) with highest lifetimes.
- $ightharpoonup \exists B' \leq B$ and corresponding threshold values:

$$\mathcal{T}(a_{B'}) \leq \mathcal{T}(a_{B'-1}) \leq \cdots \leq \mathcal{T}(a_1) \leq C_{max}$$

and the optimal policy performs simple actions $a_i = (l_i | L_i)$, if $C \leq \mathcal{T}(a_i)$ and E > 0.

Structure of Optimal Policy

For any state $s = (\mathcal{O}, \mathcal{I}, E) \in \mathcal{S}$, the optimal policy $\pi^*(s)$ has a threshold structure with respect to cost C.

- ▶ Let
 - $l_1 \leq \cdots \leq l_B$:contents in the cache (\mathcal{I}) .
 - $L_1 \ge \cdots \ge L_B$: B contents out of cache (O) with highest lifetimes.
- ▶ $\exists B' \leq B$ and corresponding threshold values:

$$\mathcal{T}(a_{B'}) \leq \mathcal{T}(a_{B'-1}) \leq \cdots \leq \mathcal{T}(a_1) \leq C_{max}$$

and the optimal policy performs simple actions $a_i = (l_i|L_i)$, if $C \leq \mathcal{T}(a_i)$ and E > 0.

LISO: A Suboptimal Policy

► Longest lifetime in-Shortest lifetime out:

- Swap largest $L \in \mathcal{O}$ with the smallest $l \in \mathcal{I}$, if $C_t \leq \mathcal{T}(a)_{a=(l|L)}$, until no more swaps can be performed.
- Single threshold value for each pair (l|L) of lifetimes.
- $oldsymbol{\circ}$ Parametrized by threshold values: $oldsymbol{ heta} = \mathcal{T}(l|L)$ for all L>l.

Policy Representation

Threshold values obtained using linear function approximation (LFA) as

$$\mathcal{T}(a)_{a=(l|L)} = \sum_{i=0}^{K_{max}} \phi(i)\theta_i(l,L) = \Phi^\top \theta(l,L) ,$$

 K_{max} : maximum lifetime

 $\Phi_t = [\phi_t(0), \phi_t(1), \dots, \phi_t(K_{max})]$: frequency vector

$$\phi(i) \triangleq \frac{\sum_{l \in \mathcal{C}} \mathbb{I}_{\{l=i\}}}{B}, \quad \text{for} \quad i = 0, 1, \dots, K_{max},$$

 $\theta_i(l,L)$: coefficients to be optimized for each simple action.

Policy Search

▶ A model free policy search technique using stochastic gradient descent.

Policy Gradient Algorithm

- generate "samples" with P(s'|s,a) and the probability density function $f_C(c)$
 - Results in trajectory $\tau_{\pi_{\theta}} = (S_1, C_1, A_1), \dots, (S_T, C_T, A_T)$ i.e., $\tau_{\pi_{\theta}, T} \sim P_{\theta, T}(\tau_{\pi_{\theta}}) = P(\tau_{\pi_{\theta}, T}|\theta).$
- Evaluate average sample cost $J_{\pi_{\theta}} = \frac{1}{T} \sum_{t=1}^{T} \mu(S_t, A_t)$
- Update θ in the direction that decreases $\rho^{\pi_{\theta}} = \mathbb{E}[J_{\pi_{\theta}}]$:

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_j - \lambda \nabla_{\boldsymbol{\theta}} \rho^{\pi_{\boldsymbol{\theta}}},$$

where $\lambda > 0$ is the step size, j is the current iteration step and

$$\nabla_{\boldsymbol{\theta}} \rho^{\pi_{\boldsymbol{\theta}}} = \int_{\tau} \nabla_{\boldsymbol{\theta}} P_{\boldsymbol{\theta}}(\tau_{\pi_{\boldsymbol{\theta}}}) J_{\pi_{\boldsymbol{\theta}}} d\tau .$$

Performance Bounds

- Unlimited cache capacity (LB-UC)
 - Decouples actions for contents, $A_t^{(2)} = \emptyset$, $\forall t$
 - Threshold \mathcal{T}_L : Content with lifetime L is downloaded if $C \leq \mathcal{T}_L$.

$$0 \leq \mathcal{T}_1 \leq \cdots \leq \mathcal{T}_{K_{max}} \leq C_{max}$$

- Threshold obtained using value iteration algorithm (VIA)
- Non-causal knowledge of user access times (LB-NCK)
 - For any time-to-user access t', contents are downloaded if $C_t \leq \mathcal{T}_{t'}$.

$$0 \leq \mathcal{T}_{D_{max}} \leq \cdots \leq \mathcal{T}_1 \leq C_{max}$$

- where D_{max} is the bound on the user access interval.
- Threshold values obtained using VIA.

Performance Bounds

- Unlimited cache capacity (LB-UC)
 - Decouples actions for contents, $A_t^{(2)} = \emptyset$, $\forall t$
 - Threshold \mathcal{T}_L : Content with lifetime L is downloaded if $C \leq \mathcal{T}_L$.

$$0 \leq \mathcal{T}_1 \leq \cdots \leq \mathcal{T}_{K_{max}} \leq C_{max}$$

- Threshold obtained using value iteration algorithm (VIA)
- Non-causal knowledge of user access times (LB-NCK)
 - For any time-to-user access t', contents are downloaded if $C_t \leq \mathcal{T}_{t'}$.

$$0 \leq \mathcal{T}_{D_{max}} \leq \cdots \leq \mathcal{T}_1 \leq C_{max}$$

where D_{max} is the bound on the user access interval.

Threshold values obtained using VIA.

Average Energy Cost Vs Cache Capacity

Percentage Improvement over LISO with FDM:

- ► LFA with LRM \rightarrow up to 5.6%. ► LFA with FDM \rightarrow up to 4.4%.
 - ▶ LISO with LRM \rightarrow up to 4.2%.

Mobility and Popularity Aware Small Cell Caching

- Random mobility patterns
- Maximum distance separable (MDS) coded content storage
- How to allocate cached to contents with different popularities?

M. Ozfatura and D. Gündüz, Mobility and popularity aware coded small-cell caching, IEEE Communication Letters, vol. 22, no. 2, pp. 288 - 291, Feb. 2018.

K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire. Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Trans. Inf. Theory, Dec. 2013.

Multi-Server System with Random Topology

- Each user connects to ρ out of P servers
- Each server can cache N/ρ files
- Both coded caching and MDS coded storage need to be utilised

N. Mital, D. Gündüz and C. Ling, Coded caching in a multi-server system with distributed storage, to appear in Int'l Wireless Communications and Networking Conference, Barcelona, Spain, Apr. 2018.

Cache-Aided Interactive Multiview Video Streaming in Small Cell Networks

- Interactive multiview streaming
- How to optimally cache and deliver multiview video content to improve the free viewpoint streaming experience?

E. Bourtsoulatze and D. Gündüz, Cache-aided interactive multiview video streaming in small cell networks, submitted for publication.

Thank You for Your Attention!