

# **Communication and Sensing for 6G Cellular Networks**

**CSR Group** 





**Stepped Frequency Radar** 

| <u>Ty</u>                         |                       |                       | Typical 3GPP Use Cases |                       | Distance in m (c) (d)                                                           |    |
|-----------------------------------|-----------------------|-----------------------|------------------------|-----------------------|---------------------------------------------------------------------------------|----|
| Interference/collision management | Smart Home            | Smart City            | Smart Factory          | Smart Traffic         | Figure: Performance of OFDM-based sensing, where (a) bandwidth = 47 MH:         | z, |
| Resource allocation               | Intruder detection    | Rainfall monitoring   | AGV detection and      | Pedestrian/animal     | range resolution = 1.5m, failed sensing; (b) bandwidth = 93 MHz, rang           | е  |
| Information abstracting           |                       |                       | tracking in factories  | intrusion detection   | resolution = 1.5m, successful sensing; (c) bandwidth = 186 MHz, rang            | е  |
| Cooperative sensing               | Seamless XR streaming | Sensing at crossroads | AMR collision          | UAV flight trajectory | resolution = 1.5m, successful sensing; and (d) bandwidth = 186 MHz, <b>rang</b> | е  |
|                                   |                       | with/without obstacle | avoidance              | tracing               | resolution = 1 m, successful sensing.                                           |    |
|                                   |                       |                       |                        |                       |                                                                                 |    |

### **Location-dependent Power Control** [1]

#### Motivation:

- Echoes/pilot signals arrive like grant-free (GF) transmission
- Average loss is related to communication distance (i.e., locations)
- Closed-loop power control is costly

#### **Our Solution:**

- For each location, group multiple transmit power levels in one power pool
- Device chooses one of the power levels to send pilot signals for active sensing
- Successive interference cancellation (SIC) technique is applied at the receiver





## Informative Envelope Modulation [2]





### Further Steps:

- > Location dependent radio frequency map design for both active sensing and passive sensing
- Collision relaxing strategies

## **Joint Power and Bandwidth Management [3]**



### **Federated Semantic Information Learning [4]**

### Motivation:

- Millimetre wave sensing has relatively low range resolution (>0.1 m) and no ability of recognition
- Multi-sensor fusion is necessary, sensors have different neural networks

### **Our Solution:**

- Wireless federated learning
- Transmit model-level 'semantic' information
- Schedule different temporal devices





A Replacement

#### Insight:

Keep similar performance with less communication overhead and energy consumption

Further Steps:
➤ Test real sensing tasks
➤ Design generic semantic information





M. Fayaz, W. Yi, Y. Liu and A. Nallanathan, "Transmit Power Pool Design for Grant-Free NOMA-IoT Networks via Deep Reinforcement Learning," in IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7626-7641, Nov. 2021.
 Z. Xie, W. Yi, X. Wu, Y. Liu and A. Nallanathan, "Is the Envelope Beneficial to Non-Orthogonal Multiple Access?" submitted to IEEE Transactions on Communications. (available: <u>https://arxiv.org/abs/2210.13060</u>)
 C. Zhang, W. Yi, Y. Liu and L. Hanzo, "Semi-Integrated-Sensing-and-Communication (Semi-ISaC): From OMA to NOMA," in IEEE Transactions on Communications, vol. 71, no. 4, pp. 1878-1893, April 2023.
 C. Chen, W. Yi, Y. Liu, and A. Nallanathan, "Communication-efficient federated learning with heterogeneous devices," in Proc. IEEE International Conference on Communication (ICC), Rome, Italy, pp. 1-6, May 2023.